Selasa, 20 Maret 2018

Mencoba buat sentiment analysis dengan RStudio

Untuk tugas deep learning kami kelompok 4 yang beranggotakan Erico, Nalom, M. Tomi dan Melta akan mencoba buat program Sentiment Analysis dan yang akan dianalisa adalah komentar SARA di facebook. Caranya:

Pertama kita perlu mempersiapkan beberapa hal:
o   R dan Rstudio
Kita bisa mendownload R dan R studio di https://cran.r-project.org/bin/windows/base/ dan https://www.rstudio.com/products/rstudio/download/
o   Akun facebook developer
Kita dapat membuat akun facebook developer di https://developers.facebook.com/
o   Token Akses dari Penjelajah API Graf
Kita bisa mendapatkan token akses dari API Graph Explorer dengan cara pada  https://developers.facebook.com/ pilih Alat & Dukungan, pilih Penjelajah API Graf kemudian akan muncul tampilan seperti ini


Pilih dapatkan token dan izinnya dipilih semua dan pilih dapatkan token akses




Kemudian kita perlu simpan token akses yang dihasilkan (*Token Akses ini hanya berlaku sampai 2 jam, lebih dari itu perlu membuatnya lagi.)

Kemudian kita jalankan Rstudio dan ketikkan
install.packages("devtools")
install.packages("plyr")
install.packages("stringr")
install.packages("ggplot2")# Install
install.packages("tm")  # for text mining
install.packages("SnowballC") # for text stemming
install.packages("wordcloud") # word-cloud generator
install.packages("RColorBrewer") # color palettes
Perintah ini berguna untuk menginstall packages yang kita butuhkan untuk sentiment analysis nanti.
          Ketikkan
library("tm")
library("SnowballC")
library("wordcloud")
library("RColorBrewer")
library(plyr)
library(stringr)
library(ggplot2)
library(devtools)
Perintah ini berguna memakai package yang tadi sudah didownload.
        Masukkan perintah ini
            install_github("pablobarbera/Rfacebook/Rfacebook")
            library(Rfacebook)
         Perintah ini berguna untuk menginstall package berdasarkan link github dan memakai package tersebut.

Untuk memakai API Facebook kita perlu memasukkan token akses yang tadi sudah kita persiapkan dengan perintah
            fb_auth = 'token akses' 
     Pada twitter kita bisa mengambil post orang dengan bebas, tapi pada facebook sekarang sudah tidak bisa, maka kita perlu mencari halaman pada facebook untuk dilihat postingannya dengan perintah
            fb_page <- getPage(page="TirtoID", token=fb_auth, n = 150,  feed = FALSE,
                   reactions = TRUE,  verbose = TRUE, api = "v2.9")
     Setelah itu kita perlu melihat hasil yang didapatkan dengan perintah
            View(fb_page)              
  
Setelah melihat hasilnya, kita perlu memilih postingan mana yang akan diambil komentarnya dan mengubahnya menjadi dataframe serta melihat hasilnya kembali. Perintahnya
       fb_post <- getPost(post = '1515768312081946_2037957289863043', n=139, token=fb_auth,api = "v2.9")
fb_post_df <- as.data.frame(fb_post[2])
View(fb_post_df)

Setelah itu komen yang kita dapatkan masih belum bersih dari tanda baca, kita perlu membersihkannya dan melihat hasilnya lagi dengan perintah
comments_data <- sapply(fb_post_df$comments.message,function(row) iconv(row, "latin1", "ASCII", sub=""))
comments_data <- gsub("@\\w+", "", comments_data)
comments_data <- gsub("#\\w+", '', comments_data)
comments_data <- gsub("RT\\w+", "", comments_data)
comments_data <- gsub("http.*", "", comments_data)
comments_data <- gsub("RT", "", comments_data)
comments_data <- sub("([.-])|[[:punct:]]", "\\1", comments_data)
comments_data <- sub("(['])|[[:punct:]]", "\\1", comments_data)
View(comments_data)


Kemudian data yang sudah bersih tadi dapat kita analisis dan buat gambar. Caranya kita perlu masukkan data yang sudah bersih tadi ke corpus, periksa isi dokumen tersebut dan mengubah teks dalam data tersebut menjadi huruf kecil, menghapus angka, dan yang lainnya dengan perintah.
         docs <- Corpus(VectorSource(comments_data))
         inspect(docs)
         # Convert the text to lower case
         docs <- tm_map(docs, content_transformer(tolower))
         # Remove numbers
         docs <- tm_map(docs, removeNumbers)
         # Remove english common stopwords
         docs <- tm_map(docs, removeWords, stopwords("english"))
         # Remove your own stop word
         # specify your stopwords as a character vector
         docs <- tm_map(docs, removeWords, c("blabla1", "blabla2"))
         # Remove punctuations
         docs <- tm_map(docs, removePunctuation)
         # Eliminate extra white spaces
         docs <- tm_map(docs, stripWhitespace)
 
     Kemudian kita menganalisa kata-kata yang sering muncul pada data tersebut dengan perintah
        dtm <- TermDocumentMatrix(docs)
        m <- as.matrix(dtm)
        v <- sort(rowSums(m),decreasing=TRUE)
        d <- data.frame(word = names(v),freq=v)
        head(d, 10)


Kita dapat membuat word cloud dari data yang sudah dianalisa tersebut dengan perintah
         set.seed(1234)
         wordcloud(words = d$word, freq = d$freq, min.freq = 1,
         max.words=200, random.order=FALSE, rot.per=0.35,
         colors=brewer.pal(8, "Dark2"))


Wordcloud diatas hanya untuk mengumpulkan kata-kata yang sering digunakan yang mana, belum mengelompokkan apakah kalimat pada kolom komentar yang menggunakan kata-kata diatas tergolong positif atau negatif.




1 komentar:

  1. kelinci99
    Togel Online Terpercaya Dan Games Laiinnya Live Casino.
    HOT PROMO NEW MEMBER FREECHIPS 5ribu !!
    NEXT DEPOSIT 50ribu FREECHIPS 5RB !!
    Ada Bagi2 Freechips Untuk New Member + Bonus Depositnya Loh ,
    Yuk Daftarkan Sekarang Mumpung Ada Freechips Setiap Harinya
    segera daftar dan bermain ya selain Togel ad juga Games Online Betting lain nya ,
    yang bisa di mainkan dgn 1 userid saja .
    yukk daftar di www.kelinci99.casino

    BalasHapus